If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25+b^2=256
We move all terms to the left:
25+b^2-(256)=0
We add all the numbers together, and all the variables
b^2-231=0
a = 1; b = 0; c = -231;
Δ = b2-4ac
Δ = 02-4·1·(-231)
Δ = 924
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{924}=\sqrt{4*231}=\sqrt{4}*\sqrt{231}=2\sqrt{231}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{231}}{2*1}=\frac{0-2\sqrt{231}}{2} =-\frac{2\sqrt{231}}{2} =-\sqrt{231} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{231}}{2*1}=\frac{0+2\sqrt{231}}{2} =\frac{2\sqrt{231}}{2} =\sqrt{231} $
| -6(2d+19)-7d=-19d+19 | | -13j+7+9j=7-4j | | 39+69=x | | 2(y+8)°=64 | | -5(-v-1)=5+5v | | 39+49=x | | -17+6z=-8-9+6z | | -j-20=15j+18-18j | | 7^{^{6x+1}}=7^{^{5x+5}} | | -8f+13=-8(f-9) | | 55×x=176 | | 56=20+3n | | -8-12r=-15-12r+7 | | 7.4=2.x | | -11b+8=b-12b+8 | | 3600=(n-2)×180 | | 2q-8=-2(-q+19) | | P-9+15p=16p+11 | | 10y-5y-9=72.60 | | -3m+10-8m=10-11m | | 15s+11=-5s+9+20s | | 4d-1=8+5d | | 18s-5s+10=13s+10 | | 8f+10=8f-2 | | 9-14j+10=19-14j | | 6x²-42+72=0 | | 42+5t=18 | | -10+w=1+w | | c+12=3c-14 | | 7d=2d+5d | | 8g=22-26 | | 4u-16=u+11 |